

Turku/Åbo – the oldest city of Finland

The only medieval city of Finland Around 300000 inhabitants in the Turku metropolitan area Bilingual city Two universities; more than 30000 university students Big industrial centre: metal, process, pharmaceutical and alimentary industry, ship building *Cultural Capital of Europe 2011*

Åbo Akademi

The university Åbo Akademi was established 1640 by the Swedish Queen Kristina

Closed by Russian emperor after the Turku fire 1827

Åbo Akademi was re-established in 1918 after the Finnish independence University of Turku was founded 1920

Åbo Akademi

Today Åbo Akademi is classical, florishing university -from humaniora to science, -from theology to technology -teaching language: Swedish -English is used much in master's -and postgraduate level

- Close collaboration with University of Turku -International -Multicultural

TRADITIONS ARE HIGHLY APPRECIATED BY US – DOCTORAL PROMOTIONS EACH 2-3 YEARS

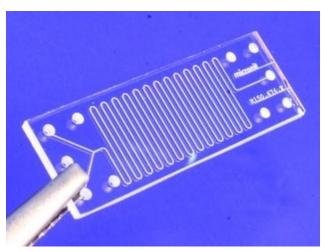
CHEMICAL AND PROCESS ENGINEERING Åbo Akademi

- The activities of Chemical Engineering cover chemistry, chemical engineering, process and system engineering, pulp and paper technology, industrial management
- We follow the Bologna reform in studies (B.Sc & M.Sc. (diplomingenjör)
- International Master's Programme in Sustainable Chemical Engineering
- A very research-oriented Department Dr.Degrees: Master's Degrees = 0.25 – about 15 Dr degrees per year
- Chemical Engineering Education was commenced in1920 The Nobel Laureate Svante Arrhenius was consulted in the establishment of the curriculum

Industrial Chemistry Reaction Engineering at ÅA around 35 scientists, around 15 languages

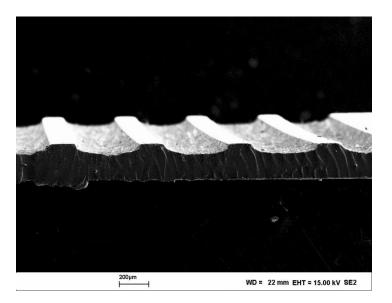
OCESS CHEMISTRY CENTR

Towards new reactor technologies



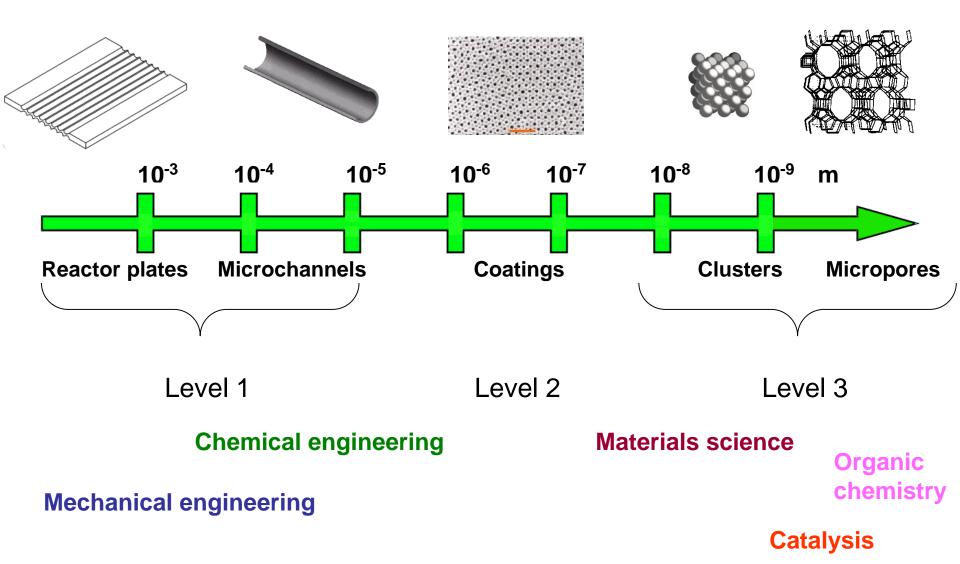
Tapio Salmi Åbo Akademi Johan Gadolin Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering FI-20500 Turku / Åbo Finland

Gas-phase microreactor technology – some experiences

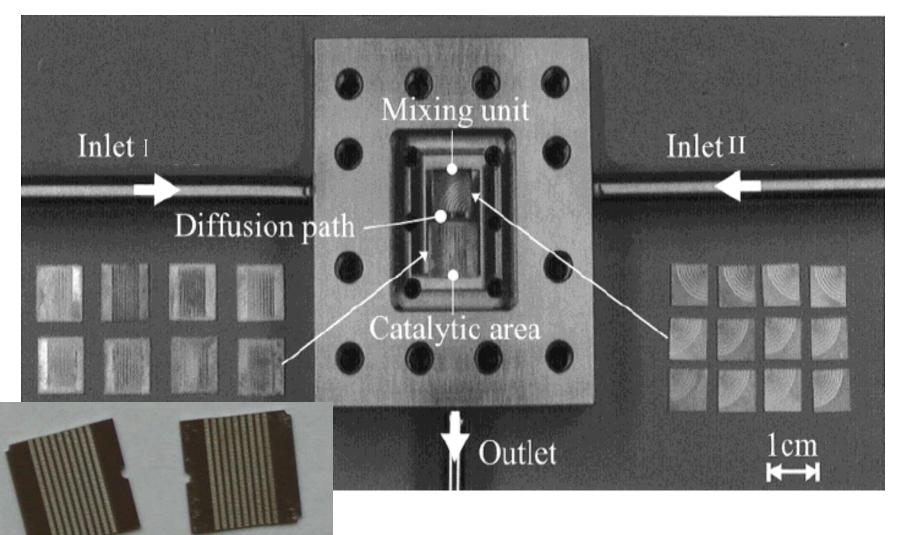

Tapio Salmi, Dmitry Murzin, Kari Eränen José R. Hernández Carucci, Sabrina Schmidt, Ville Halonen Åbo Akademi, Teknisk kemi och reaktionsteknik

Microreactors

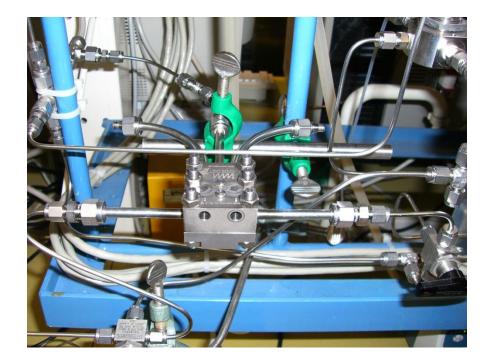
- Microstructured reactor:
 - At least one inner dimension in the micrometre range
- Benefits of microreactors:
 - ✓ High heat transfer rates
 - ✓ Short diffusion distances
 - ✓ Small inner volume: Safety
 - ✓ Efficient kinetic investigation and catalyst screening


Microreactor - advantages

- Faster transfer of research results into on-site production
- High safety small amounts of components
- Easy *number-up* to production capacity
- Smaller plants for production at distributed sites
- Smaller consuption of chemicals
- High surface-to-volume ratio
- Narrow residence time distribution (RTD)

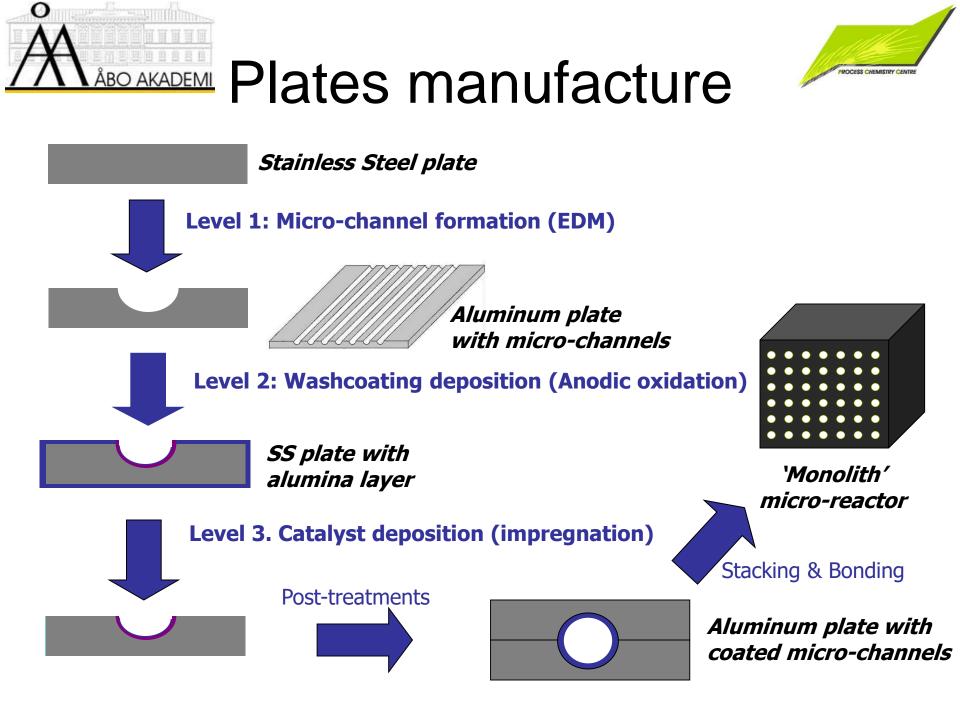

Microreaction technology: total reaction control at all length scales

Gas-phase microreactor

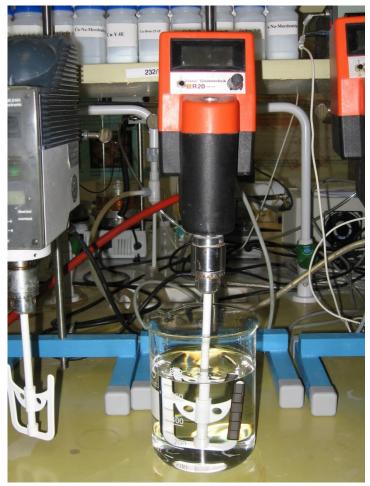


Microreactors

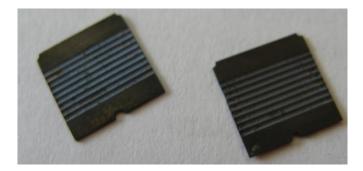
– During the past 25 years processes have been developed for the fabrication of three-dimensional microdevices from a wide variety of materials based on electronic technologies


Microstructures = $100 - 500 \mu m$ 1 $\mu m = 10^{-6} m$

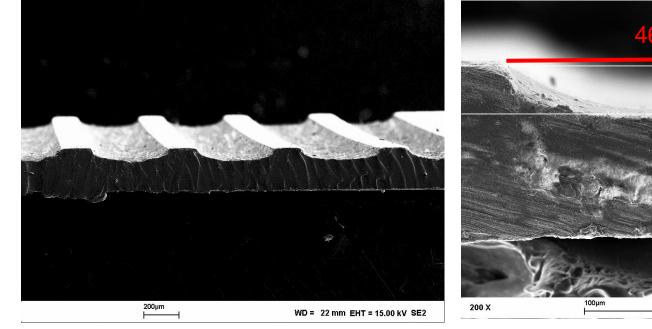
Research strategy

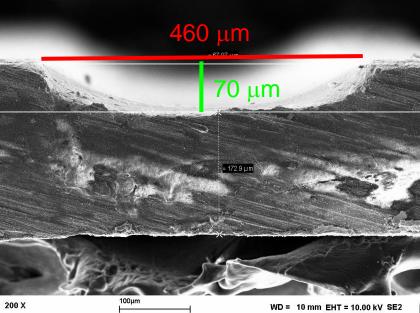

- To design and build the equipment
- To develop a catalyst (preparation, screening, characterization)
- To study the selected chemical systems in microreactors
- To develop kinetic and reactor models





Plates impregnation (ÅA)

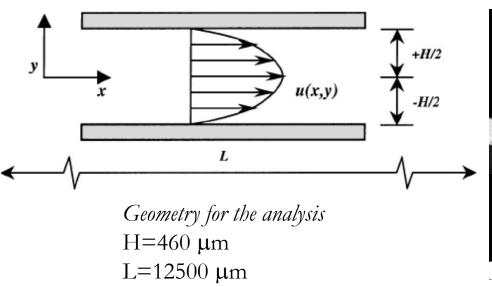


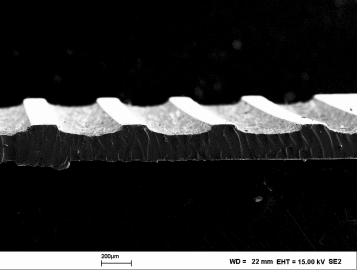


Characterization SEM pictures of the plates

SEM pictures of raw platelet – 50X

SEM pictures of raw platelet – 200X


Modelling of microchannels


- Modelling of microreactors still slightly inmature.
- Nevertheless, reliable results due to dimensions
- Laminar flow (almost no turbulent flow observed)
- Big differences in Lab-on-a-chip and micro total analysis (µTAS) with not-somicro channels

Geometry for microchannel analysis

SEM picture of a microplate - 50X

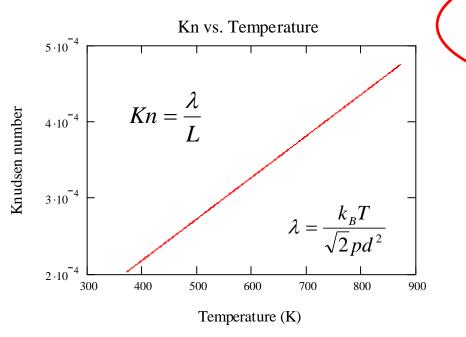
Differences between a macro- and microflow

- Flow in microchannels is usually laminar but turbulent in macrochannels
- Diffusion paths in microchannels for heat and mass transfer are short
- High surface-to-volume ratio
- Solid wall material are important. Surface heat transfer effects

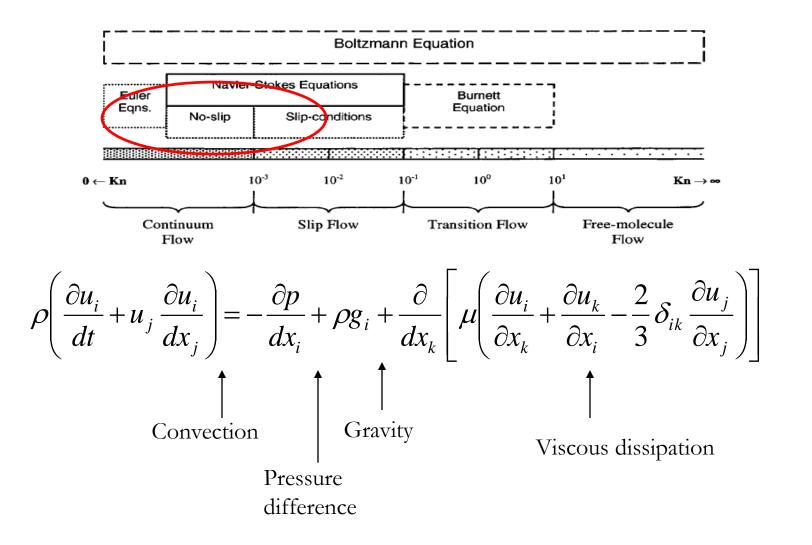
Dimensions and fluid properties

Parameters		Value
Length		125000 μm
Width	Kn all the time in non-slip domain, usual continuum description and all the components of the velocity are zero close to the walls	460 μm
Height		75 μm
Pressure		101 kPa
Temperature		373 K
Temperature at the wall		373 K
Viscosity		2e-5 Pa*s
Molecular mass		28 kg/kmol

Flow in microchannels

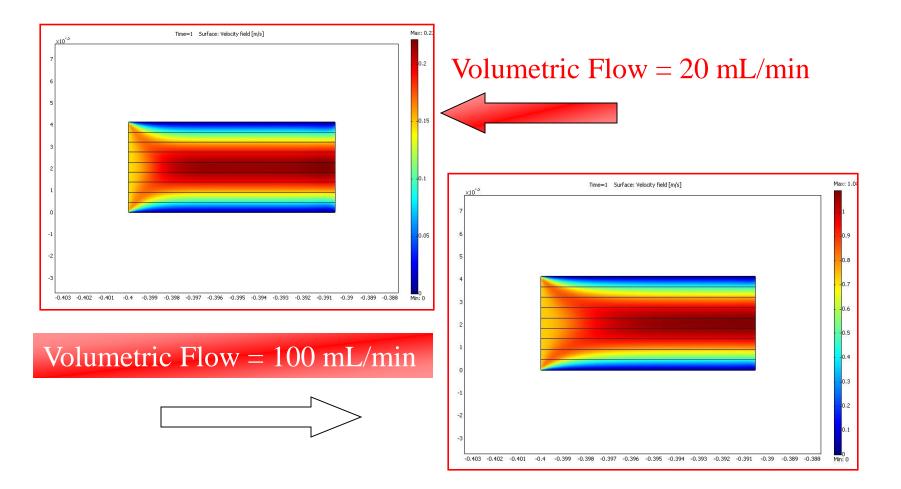

Gas-phase microreactor system with spare parts

- What are the boundaries?
- What is microscale?
- Are the classical equations valid?



What is Knudsen number?

- Continuum flow with noslip boundary conditions (Kn < 10⁻², 10⁻³)
- Continuum flow with slip boundary conditions (10⁻² < Kn < 10⁻¹)
- Transition flow (10⁻ ¹<Kn<10)
- Free molecular flow (Kn>10)



CFD modelling

Reactor modelling

Typical models

- 1. Axial dispersion
- 2. Laminar flow and radial diffusion

Diffusion effects in modelling

- Nevertheless of the thickness of the catalytic layer and depending on the reaction conditions, diffusion limitation inside the microchannels might play a role in the system
- Mass transfer limitation from the bulk phase to the surface of the coating could appear, mainly via molecular diffusion

Catalyst layer and microchannels

Catalyst layer

$$\varepsilon_{p} \frac{dc_{i}}{dt} = r_{i}\rho_{p} + \frac{D_{e}}{\delta^{2}} \left(\frac{d^{2}c_{i}}{dx^{2}} + \frac{s}{x} \frac{dc_{i}}{dx} \right) \qquad s \in [0,2]$$
$$x \in [0,1]$$

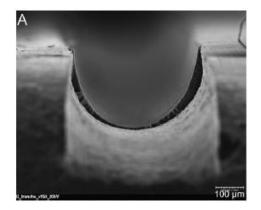
Mass balance in the **microchannels**:

$$\frac{dc_i}{dt} = D_i \left(\frac{d^2 c_i}{dr^2} + \frac{1}{r} \frac{dc_i}{dr} \right) + \frac{d(c_i w)}{dl} \qquad w = \left(1 - \left(\frac{r}{R} \right)^2 \right) \cdot w_0$$

Boundary conditions:

$$\frac{dc_i}{dr} = 0, r = 0$$

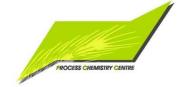
$$\frac{D_e}{\delta} \left(\frac{dc_i'}{dx} \right)_{x=0} = D_i \left(\frac{dc_i}{dr} \right)_{r=R} \qquad \left(\frac{dc_i'}{dx} \right)_{x=1} = 0$$



Layer thickness

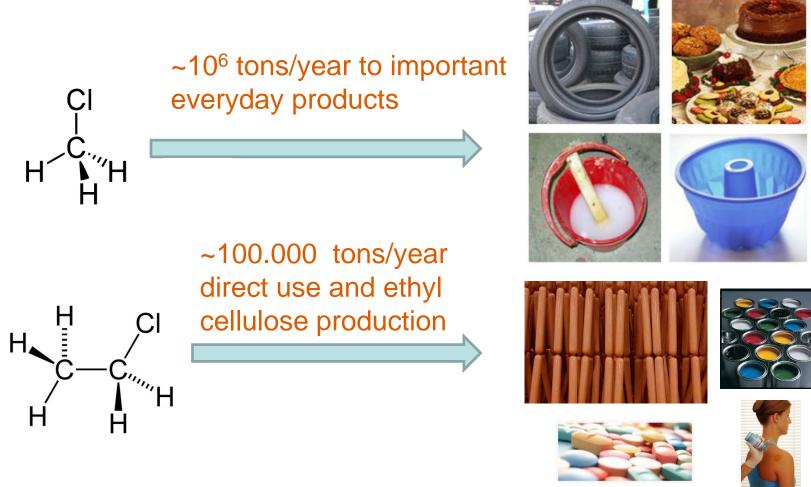
A distribution function $\omega(\delta)$ as a function of the thickness δ :

$$\frac{D_e}{\delta} \left(\frac{dc'_i}{dx} \right)_{x=0} = D_e \int_{\delta_{\min}}^{\delta_{\max}} \omega(\delta) \left(\frac{dc'_i}{dx_{\delta}} \right)_{x_{\delta}=0} d\delta$$


Equation to be solved:

$$\frac{dc_i}{dt} = D_i \left(\frac{d^2 c_i}{dr^2} + \frac{1}{r} \frac{dc_i}{dr} \right) + \frac{d(c_i w)}{dl} \qquad \qquad w = \left(1 - \left(\frac{r}{R} \right)^2 \right) \cdot w_0$$

Synthesis of chemical intermediates in microreactors


Sabrina A. Schmidt, Tapio Salmi, Dmitry Murzin, José Hernández Carucci, Narendra Kumar, Kari Eränen

> Teknisk kemi & reaktionsteknik Åbo Akademi

Methyl and ethyl chloride

ICIS Chemical Business Americas; 3/19/2007, Vol. 271 Issue 11, p50-50, 1p; Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 2004. Pictures: Wikipedia

Production

- Hydrochlorination of ethanol and methanol
- R-OH + HCI \rightarrow R-CI + H₂O
 - Ether as side-product formed
 - In case of ethanol also ethylene, acetaldehyde
 - T ~ 300 °C, catalyst: Alumina, Zinc chloride / Alumina
 - Very rapid gas phase reactions

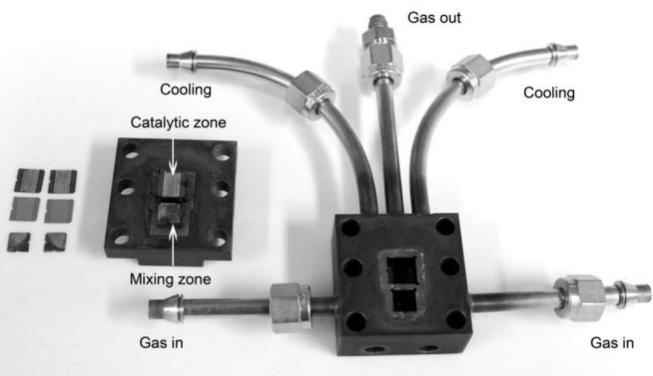
Why microreactor: safety

• Highly flammable and toxic gases

- Transportation and storage = \otimes / a risk and a cost
- Failure (e.g. runaway) of a big unit is dangerous
- Idea: produce alkyl chloride on-site in a microreactor in the amounts needed
- "Keep the tiger in the cage!"

Why microreactor: diffusion

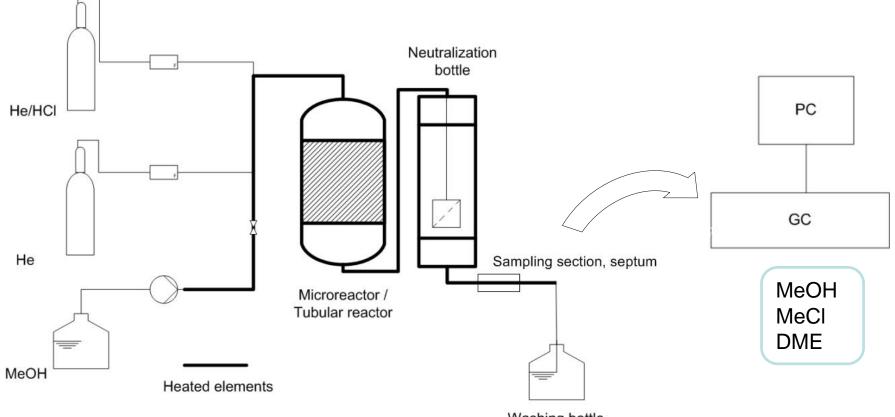
- Efficiency: EtCl / MeCl formation are very fast!
 - Low diffusion distances
 - Increased catalyst and space efficiency
 - Ideal tool for kinetic studies


Research strategy

- Catalyst studies
- Catalyst coating technique for microchannels

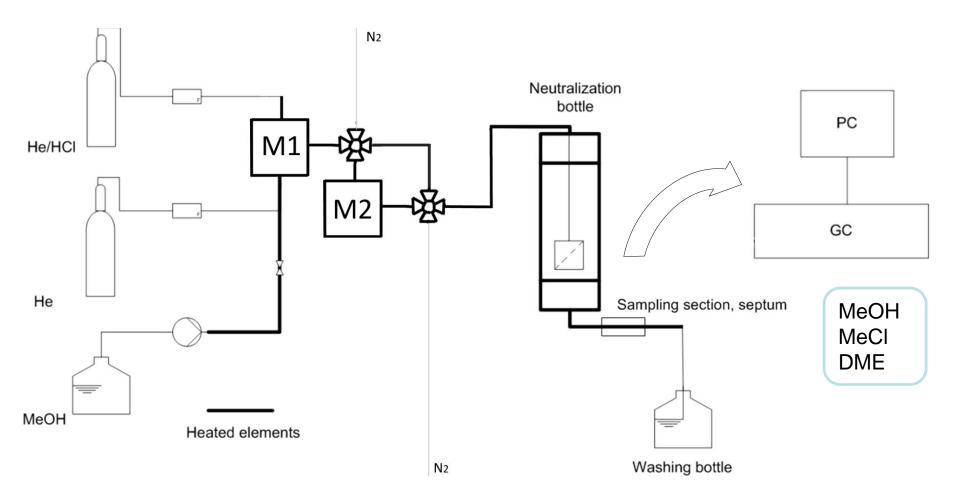
- Kinetic and thermodynamic investigations
- Mathematical modelling

The microreactor


- IMM GPMR-mix : Gas phase microreactor with mixing and catalyst zone
- Material: stainless steel

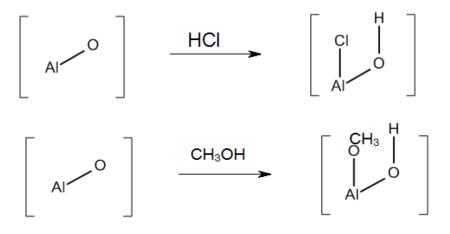
ÅBO AKADEMI

Microreactor and tubular reactor



Washing bottle

Two microreactors

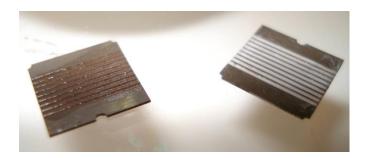


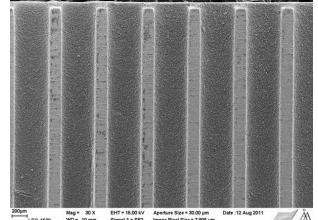
Catalysts

- Neat Alumina
- Active sites: Lewis acid sites (LAS, e.g. Al³⁺ centres)

- Alternatively: ZnCl₂/Alumina
 - Introduction of zinc based LAS
- ZnCl₂/ Zeolites
 - Tunable acidity

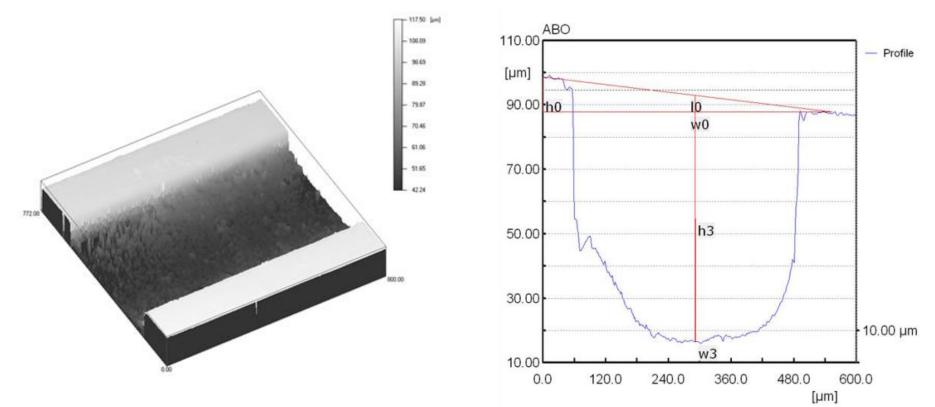
Catalyst of choice


- Activity and selectivity can be improved by addition of zinc chloride
- Zeolites are the most active but least stable and selective catalysts
- Zinc modified alumina is stable in the tubular reactor but selectivity decreases in the microreactor
- Neat alumina is least active but selective, stable and inexpensive catalyst
 - Catalyst of choice



Catalyst coating

- Binder-free slurry coating method
- Adhesion through:
 - Thermal surface treatment
 - Ball milled catalyst (<32 µm)
- Amount of catalyst in one microreactor:
 3.4 mg


S. A. Schmidt, N. Kumar, B. Zhang, K. Eränen, D. Yu. Murzin, and T. Salmi, Preparation and Characterization of Alumina-Based 42 Microreactors for Application in Methyl Chloride Synthesis, *Ind. Eng. Chem. Res.* **2012**, 51, 4545

Characterisation of coating

• Confocal microscopy: Morphology, thickness and surface roughness

• Coating thickness : 15 μm, channel depth: 90 μm

S. A. Schmidt, N. Kumar, B. Zhang, K. Eränen, D. Yu. Murzin, and T. Salmi, Preparation and Characterization of Alumina-Based 43 Microreactors for Application in Methyl Chloride Synthesis, *Ind. Eng. Chem. Res.* **2012**, 51, 4545

Kinetic and thermodynamic investigations

Mathematical modelling

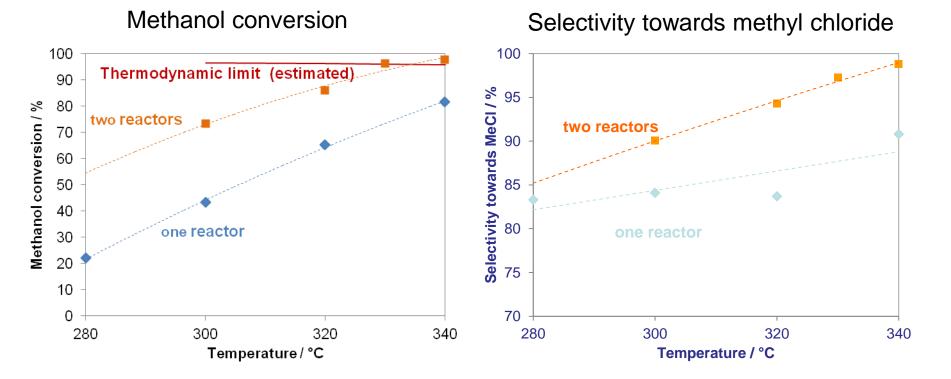
Κ_{eσ}

71\

Hydrochlorination of methanol at 300 °C •

$$CH_{3}OH + HCl \leftrightarrow CH_{3}Cl + H_{2}O \qquad (I) \qquad 398$$

$$2CH_{3}OH \leftrightarrow CH_{3}OCH_{3} + H_{2}O \qquad (II) \qquad 12$$


$$CH_{3}OCH_{3} + HCl \leftrightarrow CH_{3}OH + CH_{3}Cl \qquad (III) \qquad 36$$

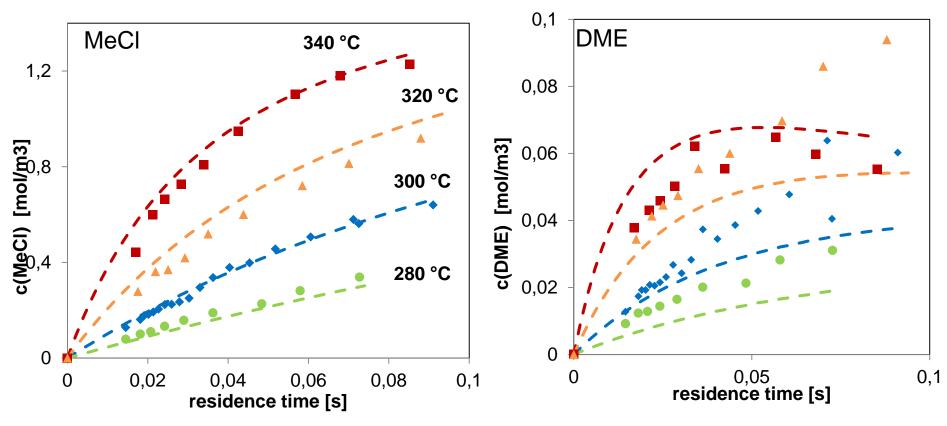
- Lightly exothermic, main reaction: -30 kJ/mol
- The reactions are not completely irreversible! ۲

Performance of microreactors

A very high conversion and selectivity can be reached with two microreactors

S. A. Schmidt, Z. Vajglova, K. Eränen, D. Murzin, T. Salmi, Microreactor technology for on-site production of methyl chloride. Green 46 Process. Synth. 2014, Advance online publication, DOI: 10.1515/gps-2014-0039

Reaction modeling -catalyst layer


- Kinetic model: Langmuir-Hinshelwood
- Plug flow model for the reactor

$$\begin{pmatrix} c_{CH3OH}c_{HCl} - \frac{c_{CH3Cl}c_{H2O}}{K_1} \\ D^2 \end{pmatrix} \begin{pmatrix} c_{MeOH}^2 - \frac{c_{DME}c_{H2O}}{K_2} \\ r_2 = k_2 \frac{(c_{MeOH}^2 - \frac{c_{DME}c_{H2O}}{K_2})}{D^2} \end{pmatrix} \begin{pmatrix} c_{MeOH}^2 - \frac{c_{MeOH}c_{MeCl}}{K_2} \\ r_3 = k_3 \frac{(c_{DME}c_{HCl} - \frac{c_{MeOH}c_{MeCl}}{K_3})}{D^2} \end{pmatrix} \\ D = K_{HCl}c_{HCl} + 1 \end{pmatrix}$$

Kinetic model

- Detailed description of MeCl formation
- DME formation shows deviation
 - Significantly lower concentration, rough description of reaction 3

S. A. Schmidt, N. Kumar, A. Reinsdorf, K. Eränen, J. Wärnå, D., Murzin, T., Salmi, Methyl chloride synthesis on Al₂O₃ in a microstructured reactor – thermodynamics, kinetics and mass transfer, Chem. Eng. Sci 2013, 95, 232-245.

Reaction modeling - catalyst layer

- Obtained activation energy for MeCI formation is double of previously published
 - Suggests internal diffusion limitations

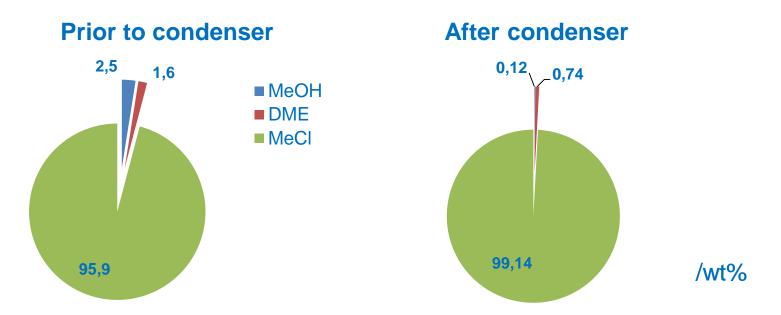
- Diffusion modelling in the catalyst layer
 - Mean transport pore model, Catalyst shape: slab

$$D_{ei} = (\frac{\varepsilon_p}{\tau_p})D_i \qquad \frac{dc_i}{dt} = \frac{1}{\varepsilon_p}(D_{ei}\frac{d^2c_i}{dr^2} + r_i\rho_p)$$

S. A. Schmidt, N. Kumar, A. Reinsdorf, K. Eränen, J. Wärnå, D., Murzin, T., Salmi, Methyl chloride synthesis on Al₂O₃ in a microstructured reactor – thermodynamics, kinetics and mass transfer, Chem. Eng. Sci 2013, 95, 232-245.

• Wrong activation energies reported in literature

Product separation


- Aim: At the outlet of the reactor: only traces of MeOH, HCI and DME due to maximum conversion
- Methanol and water separation by condensation
- Glass made condenser, coolant: glycerin/water -10 °C
- Ongoing work with metal condenser 210 cm²

Efficiency: gas phase

• Composition of the gas phase at maximum conversion (97.6%)

MeCI and DME are efficiently separated from the liquid

S. A. Schmidt, Z. Vajglova, K. Eränen, D. Murzin, T. Salmi, Microreactor technology for on-site production of methyl chloride. Green Process. Synth. 2014, Advance online publication, DOI: 10.1515/gps-2014-0039.

Conclusions

- Neat alumina is the most stable catalyst
- Binder free slurry coating method for stable and uniform catalyst coating
- Microreactor suppresses severe diffusion limitations in methanol and ethanol hydrochlorination
- Detailed kinetic models were developed for methanol and ethanol hydrochlorination
- Separation of MeCI and DME from water, methanol and HCI is efficient at high conversion (97.6 % conversion; > 99 wt% MeCI)

Summary

- ✓ Microprocess technology is a great challenge
- Microprocess technology is strongly multidisciplinary: manufacturing, characterization of materials, screening, kinetics, mass and heat transfer, flow measurement, modelling
- ✓ Take the challenge, search for new applications !

Thank you!

Financial support:

Internship students: Arne Reinsdorf, Zuzana Vajglova and Quentin Balme